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Note 

Natural Convection at Very High Rayleigh Numbers 

The ENTWIFE finite-element code has been applied successfully to the 
simulation of a wide range of convective flows in recent years [l-4]. The code uses 
a standard Galerkin formulation with mixed-order interpolation for the velocity 
and pressure variables. However, a long-standing problem has been the limiting 
value of Rayleigh number (typically 109) beyond which converged results could not 
be obtained. Difficulties in modelling free convection in a velocity-pressure for- 
mulation have been reported by other groups, and the penalty method has been 
widely adopted as a possible remedy. However, the nature of the penalty method 
also imposes a limiting value on the Rayleigh number (in finite-precision 
arithmetic), which is somewhat smaller than that encountered in ENTWIFE. 

Although the ENTWIFE limit of around lo9 is higher than that achieved in most 
other published finite-element predictions, it falls short of the Rayleigh numbers in 
the range 10” to 1013 that are typical of experiments relevant to fire studies and 
nuclear reactor thermalhydraulics. As a result, comparison and validation against 
such experiments has only been possible by extrapolation of the predictions [34]. 

The problem which occurs is characteristic of convection at high Rayleigh num- 
ber; the flow is concentrated in narrow boundary layers, outside which the fluid 
stagnates with a high degree of temperature stratification. The equations describing 
the convection in the stagnant region then reduce to a simple balance between the 
vertical pressure gradient and the buoyancy force terms, which are of the order of 
the Rayleigh number in magnitude. Most commonly used elements have too few 
degrees of freedom to achieve this balance accurately, resulting in mesh-scale 
oscillations in the vertical velocity. These oscillations increase with Rayleigh num- 
ber and ultimately prevent convergence unless an unrealistically line mesh is used in 
the stagnant region. 

To demonstrate this inability to model correctly the balance of buoyancy force 
and vertical pressure gradient, the equations for free convection in a closed cavity 
were solved in the Boussinesq approximation, with an imposed temperature dis- 
tribution in the interior which gives an analytic solution of no flow. Gresho et al. 
[S] have used a similar technique in examining the relative merits of elements. We 
consider three different cases: 

(i) surfaces horizontal-vertical, temperature T = z in cavity, elements 
aligned with stratification; 

(ii) surfaces horizontal-vertical, temperature T = z2 in cavity, elements 
aligned with stratification; 

155 
0021-9991/85 $3.00 

581/W-11 



156 CLIFFE, JACKSON, AND WINTERS 

(iii) surfaces tilted, temperature T = z in cavity, elements not aligned with 
stratification. 

All three cases led to mesh-scale oscillations which increased with Rayleigh num- 
ber, even though the positive temperature gradient should lead to no flow. This was 
verified for the following elements and interpolations: 

(i) The six-node triangle with quadratic velocities and temperature and 
linear pressure, 

(ii) The seven-node triangle with super-quadratic velocities and temperature 
and piecewise-linear pressure [ 61. 

(iii) The eight-node quadrilateral with biquadratic velocities and temperature 
and Co bilinear pressure. 

(iv) The nine-node quadrilateral with biquadratic velocities and temperature 
and Co bilinear pressure. 

The problem was overcome by implementing a different element, a nine-noded 
quadrilateral with piecewise-linear (discontinuous across element boundaries) 
variation of the pressure, which has been discussed in [7-lo]. The extra pressure 
freedoms ensure an exact balance between pressure gradient and buoyancy terms, 
provided the elements are rectangular and parallel to the isotherms. For the first 
two test cases described, the element did indeed predict successfully the no-flow 
solution. For the third test case, mesh-scale oscillations resulted, since the elements 
were not parallel to the isotherms. A fuller discussion of this behaviour is given in 
the appendix. 

With this new element there was no difficulty in simulating convection in rec- 
tangular enclosures at Rayleigh numbers up to 1012, using relatively coarse grids. 
As an example of this, we consider a closed rectangular cavity with a width-to- 
height ratio of 2.1. The thermal boundary conditions on the closed cavity are 

(i) adiabatic left vertical wall; 
(ii) right vertical wall at a uniform hot temperature; 

(iii) roof at the same uniform hot temperature as the right wall; 
(iv) floor at a uniform cold temperature. 

Figure 1 shows an irregular grid of 18 x 18 elements (that is, 37 x 37 nodes), 
which is strongly graded to resolve the very narrow boundary layers. Figure 2 
shows the predicted streamlines and isotherms obtained on this grid for a Rayleigh 
number of 1012, based on cavity width, and a Prandtl number of 5. 

The use of this element represents a significant breakthrough in the simulation of 
natural convection in the finite-element method, and opens the way for many new 
applications, hitherto impossible. The success of the new element is not only con- 
fined to convection at high Rayleigh numbers. We have also used it to predict 
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values of the critical Rayleigh number for the onset of Benard convection. These are 
in accord with the results of other work using an entirely different method. In con- 
trast, the old element was found to give an error of 2% for a grid of identical size. 

APPENDIX 

We consider the problem of the natural convection of a Boussinesq fluid, with the 
temperature T a function of the vertical coordinate z only. The analytic solution for 
the pressure p is 

p = Ra Pr 
s 

T(z) dz, (1) 

where Ra is the Rayleigh number and Pr the Prandtl number. This equation 
represents simply the balance of the pressure gradient and buoyancy terms. 
Freedom-counting shows that it is not in general possible to satisfy this requirement 
if the temperature is modelled by a quadratic interpolation and the pressure by a 
piecewise-constant, piecewise-linear, linear or quadratic interpolation. However, it 
may become possible when the temperature field is aligned with elements, on which 
the basis functions are products of functions of x and z. 

We first show that this balance can be achieved using the nine-node quadrilateral 
with C’ linear interpolation for the pressure. A similar proof holds for the same 
element with C-’ bilinear pressure interpolation, and for the four-node 
quadrilateral with piecewise constant pressure interpolation. 

We have to construct a discrete pressure field such that 

and 

for all velocity basis functions I/I,. Here D is the cavity domain. 
Let p = p(z) depend only on z and suppose the normal component of velocity is 

zero on the boundary of the region. Clearly Eq. (2) is satisfied since 

/QP$lo”!-;pgdxdz=ib [pt,bi];;dz=O. 
0 

For the element we are considering, we have $; = A(x) B(z), thus Eq. (3) becomes 

is ,” :p(z)A(x)Fdxdz+RaPrjb/Y T(z) A(x) B(z) dx dz = 0; 
0 0 
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that is, 

s 

h dB(z) 
0 

P(Z) dz - dz + Ra Pr jh T(z) B(z) dz = 0. 
0 

(4) 

Thus the problem is essentially one dimensional. Number the elements in the ver- 
tical direction j = 1, 2,..., N, where N is the number of elements. The pressure 
degrees of freedom in element i are the value p, and z derivative pzsi at the centre- 
node of the element. Equation (4) then reduces to 2N- 1 equations involving the 
pressure freedoms as follows: 

$ Llzipz,i= ti, (5) 

2(P;-P,+l)+~~Zi(P~.;+P~.i+,)=~i+l/2~ (6) 

where AZ, is the height of the Ch element and ti and t;, ,,Z depend only on T(z). It is 
now clear that Eqs. (5) and (6) always have a solution, for any T(z), which is uni- 
que up to an additional constant (as usual for the pressure in incompressible flow). 

The above proof is almost trivial but it is important to note that it depends on 
two points. First the element must have enough pressure degrees of freedom, and 
second a rectangular mesh aligned with the isotherms in the stratified region must 
be used. 

Thus the seven-noded triangle with augmented quadratic interpolation for 
velocity and piecewise-linear interpolation for pressure performs badly, because its 
basis functions do not factorize, even though it has many more pressure degrees of 
freedom than the six-noded triangle. In fact this particular element has one degree 
of freedom per vector momentum equation, and so has the optimum constraint 
ratio as defined by Gresho et al. [S]. Nevertheless, it is incapable of modelling con- 
vection at very high Rayleigh numbers in the velocity-pressure formulation. 
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